
NetLogger

Future Technologies Group

NetLogger: Distributed System
Monitoring and Analysis

Ernest Orlando Lawrence Berkeley National Laboratory

Brian L. Tierney

NetLogger

Outline

• Overview
– What is NetLogger?
– What is NetLogger good for?
– What is NetLogger not good for?

• NetLogger Components
– message format
– instrumentation library
– system monitoring tools
– visualization tools

• Case Studies
– Radiance luminosity application
– Parallel remote data server (DPSS)

• Current Work
• Current Issues

NetLogger

Overview

• The Problem
– When building distributed systems, we often

observe unexpectedly low performance
• the reasons for which are usually not obvious

– The bottlenecks can be in any of the following
components:

• the applications
• the operating systems
• the disks or network adapters on either the sending or

receiving host
• the network switches and routers, and so on

• The Solution:
• Highly instrumented systems with precision timing

information and analysis tools

NetLogger

Bottleneck Analysis

• Distributed system users and developers often
assume the problem is network congestion
– This is often not true

• In our experience tuning distributed applications,
performance problems are due to:
– network problems: 40%
– host problems: 20%
– application design problems/bugs: 40%

• 50% client , 50% server

• Therefore it is equally important to instrument the
applications

NetLogger

NetLogger Toolkit

• We have developed the NetLogger Toolkit

– A set of tools which make it easy for distributed
applications to log interesting events at every
critical point

– NetLogger also includes tools for host and
network monitoring

• The approach is novel in that it combines network,
host, and application-level monitoring to provide a
complete view of the entire system

NetLogger

Why “NetLogger”?

• The name “NetLogger” is somewhat misleading
– Should really be called: “Distributed

Application, Host, and Network Logger”

• “NetLogger” was a catchy name that stuck

NetLogger

When to use NetLogger

• When you want to:
– do performance/bottleneck analysis on

distributed applications
– determine which hardware components to

upgrade to alleviate bottlenecks
– do real-time or post-mortem analysis of

applications
– correlate application performance with system

information (ie: TCP retransmission's)
• works best with applications where you can follow

a specific item (data block, message, object)
through the system

NetLogger

When NOT to use NetLogger

• Analyzing massively parallel programs (e.g.: MPI)
– Current visualization tools don’t scale beyond

tracking about 20 types of events at a time

• Analyzing many very short events
– system will become overwhelmed if too many

events
– we typically use NetLogger to monitor events

that take > .5 ms
– e.g: probably don’t want to use to instrument

the UNIX kernel

NetLogger

NetLogger Components

• NetLogger Toolkit contains the following
components:
– NetLogger message format
– NetLogger client library
– NetLogger visualization tools
– NetLogger host/network monitoring tools

• Additional critical component for distributed
applications:
– NTP (Network Time Protocol) is required to

synchronize the clocks of all systems

NetLogger

NetLogger Message Format

• We are using the IETF draft standard Universal Logger
Message (ULM) format (http://www.ietf.org/internet-
drafts/draft-abela-ulm-05.txt):

– a list of “field=value” pairs

– required fields: DATE, HOST, PROG, and LVL

• LVL is the severity level (Emergency, Alert, Error, Usage,
etc.)

– followed by optional user defined fields

• NetLogger adds these required fields:
• NL.EVNT, a unique identifier for the event being logged

—e.g.: SERVER_IN, VMSTAT_USER_TIME,
NETSTAT_RETRANSSEG

NetLogger

NetLogger Message Format

• Sample NetLogger ULM event:
DATE=19980430133038.55784 HOST=foo.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
SEND.SZ=49332

– This says program named testprog on host
foo.lbl.gov performed event named SEND_DATA,
size = 49332 bytes, at the date/time given

• User-defined data elements (any number) are used to
store information about the logged event - for example:

• NL.EVNT=SEND_DATA SEND.SZ=49332
—the number of bytes of data sent

• NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
—the number of TCP retransmits since the previous event

NetLogger

Other Formats

• We’d like to convince everyone to use the
ULM/NetLogger format for logging
– This way we can all share log file management

and visualization tools
• Probably not realistic

– Working on filters to convert the following
to/from NetLogger format

• Pablo, NWS. Surveyor?, others?

– Also working on a binary representation for
more efficient use of network and disk

• If ULM is not adequate, whose format is better?

NetLogger

NetLogger API

• NetLogger Toolkit includes application libraries for
generating NetLogger messages
– Can send log messages to:

• file
• host/port (netlogd)
• syslogd
• memory, then one of the above

• C, C++, Java, Perl, and Python APIs are currently
supported

NetLogger

NetLogger API

• Only 6 simple calls:
– NetLoggerOpen()

• create NetLogger handle, specify logging destination

– NetLoggerWrite()
• get timestamp, build NetLogger message, send to destination

– NetLoggerGTWrite()
• must pass in results of Unix gettimeofday() call

– NetLoggerFlush()
• flush any buffered message to destination

– NetLoggerSetLevel()
• set ULM severity level

– NetLoggerClose()
• destroy NetLogger handle

NetLogger

Sample NetLogger Use

 lp = NetLoggerOpen(method, progname, NULL,
hostname, NL_PORT);

while (!done)
{

 NetLoggerWrite(lp, "EVENT_START",
"TEST.SIZE=%d", size);

 /* perform the task to be monitored */
 done = do_something(data, size);

 NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);

NetLogger

NetLogger Host/Network Tools

• Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format
– netstat (TCP retransmissions, etc.)
– vmstat (system load, paging, etc.)
– iostat (disk activity)
– ping

• These tools have been wrapped with Perl or Java
programs which:
– parse the output of the system utility
– build NetLogger messages containing the results

NetLogger

NetLogger Network Tools

• NetLogger tool for SNMP queries
– Usage: nl_snmpget hostname object [port]

• Examples:
– host monitoring

• nl_snmpget unix_host sysName

— Returns: system.sysName.0 = wakko.lbl.gov

– router monitoring
• nl_snmpget routername ipInDelivers 3

—Returns: tcp.tcpInErrs.3 = 4000

– ATM switch monitoring
• nl_snmpget switchname sonetLineFEBEs

• nl_snmpget switchname portTransmittedCells

NetLogger

NetLogger Events

• Logged events are correlated with system
behavior to characterize the performance of the
system during actual operation

– facilitates bottleneck identification

• Using “life-lines” to visualize the data flow is the
key to easy interpretation of the results.

• We believe this type of monitoring is a critical
component to building reliable high performance
data intensive systems

NetLogger

NetLogger Event “Life Lines”

NetLogger

Event Id

• In order to associate a group of events into a
“lifeline”, you must assign an event ID to each
NetLogger event

• Sample Event Ids
– file name
– block ID
– frame ID
– user name
– host name
– etc.

NetLogger

Sample NetLogger Use

lp = NetLoggerOpen(method, progname, NULL, hostname, NL_PORT);
for (i=0; i< num_blocks; i++) {

NetLoggerWrite(lp, “START_READ”,
“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);

read_block(i);
NetLoggerWrite(lp, “END_READ”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
NetLoggerWrite(lp, “START_PROCESS”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
process_block(i);
NetLoggerWrite(lp, “END_PROCESS”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
NetLoggerWrite(lp, “START_SEND”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
send_block(i);
NetLoggerWrite(lp, “END_SEND”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
}
NetLoggerClose(lp);

NetLogger

NetLogger Visualization Tools

• Exploratory, interactive analysis of the log data has
proven to be the most important means of identifying
problems

– this is provided by nlv (NetLogger Visualization)

• nlv functionality:
– can display several types of NetLogger events at

once
– user configurable: which events to plot, and the

type of plot to draw (lifeline, load-line, or point)
– play, pause, rewind, slow motion, zoom in/out, and

so on
– nlv can be run post-mortem or in real-time

• real-time mode done by reading the output of netlogd as it
is being written

NetLogger

NLV Graph Types

• nlv supports graphing of “points”, “load-lines”, and
“lifelines”

NetLogger

NLV

NetLogger

NLV Zoom Feature

NetLogger

NLV with lifeline, load-line, and
point events

NetLogger

Example NLV Configuration

display server data as a “lifeline”
set +SERVER_READ
type line

lifeline constructed from messages from the same client
and server

id [CLIENT_HOST DPSS.SERV]

messages with the same DPSS.SERV get the same color
group DPSS.SERV

[+APP_SENT +DPSS_SERV_IN +DPSS_START_READ
+DPSS_END_READ +DPSS_START_WRITE +APP_RECEIVE]

NetLogger

Network Time Protocol

• For NetLogger timestamps to be meaningful, all
systems clocks must be synchronized.

– NTP is used to synchronize time of all hosts in
the system.

—NTP is from Dave Mills, U. of Delaware
(http://www.eecis.udel.edu/~ntp/)

– Must have NTP running on one or more primary
servers, and on a number of local-net hosts,
acting as secondary time servers

– typically get clock synchronized to within 1
millisecond of each other

NetLogger

How to Instrument Your
Application

• You’ll probably want to add a NetLogger event to the
following places in your distributed application:
– before and after all disk I/O
– before and after all network I/O
– entering and leaving each distributed component
– before and after any significant computation

• e.g.: an FFT operation

– before and after any significant graphics call
• e.g.: certain CPU intensive OpenGL calls

• This is usually an iterative process
– add more NetLogger events as you zero in on the

bottleneck

NetLogger

Example 1: Parallel Visualization
Application

• Radiance is a suite of programs for the analysis
and visualization of lighting in design.
– Input includes the scene geometry, materials, luminance,

time, date, and sky conditions

• Radiance has been adapted at LBNL to run on
multiple UNIX workstations
– The image is broken into many small pieces, and

illumination calculations are performed for each piece
independently

• Used NetLogger to measure:
– overall system throughput,
– latency for each stage of getting data, processing it, and

writing it
– patterns of latency which reflect resource contention and

other interaction delays

NetLogger

Client

 Master

= monitoring point

*

*

*

Worker:
Projection

Worker: Ray
Tracer

Worker:
Projection

Worker: Ray
Tracer

Worker:
Projection

Worker: Ray
Tracer

*
*
* *

*
*
*
**

Radiance Instrumentation Points

NetLogger

NetLogger Radiance Results:
Before Tuning

NetLogger

NetLogger Radiance Results:
After Tuning

NetLogger

Example 2: Parallel Data Block
Server

• The Distributed Parallel Storage Server (DPSS)
– provides high-speed parallel access to remote

data
– Unique features of the DPSS:

• On a high-speed network, can actually access remote
data faster that from a local disk

—57 MB/sec vs 10 MB/sec

• NetLogger was used for performance tuning and
debugging of the DPSS

NetLogger

DPSS Cache Architecture

Client Application

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

DPSS Master

data blocks

data blocks

data blocks
Logical Block

Requests

� logical to physical
block lookup

� access control
� load balancing

Physical Block
Requests

NetLogger

DPSS Instrumentation

Client
Application

Shared Memory Cache

Block
Request
Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

DPSS Master

from other DPSS
servers

*

= monitoring point

DPSS Data Server

to other

DPSS se
rve

rs

Block
Writer
Thread

to other
 clients

Disk Disk DiskDisk

*

*
*
*

**

*

*

*

**

NetLogger

NetLogger Results for the DPSS

NetLogger

NetLogger Results for the DPSS
over a WAN

NetLogger

NLV of DPSS with a HENP client

NetLogger

Current Work: JAMM

• Java Agents for monitoring and management
(JAMM)
– Java RMI-based agents are used to start up

NetLogger versions of system tools
• netstat, vmstat, uptime, xntpdc, ping, netperf,

etc.

• Monitoring can be based on application use
– e.g.: only do monitoring while a client is

connected to a server

• For more info see: http://www-didc.lbl.gov/JAMM/

NetLogger

Current Work

• NetLogger enhancements:
– adding Globus security

• plan to use GlobusIO for sending NetLogger
messages to netlogd

– binary transmission/storage format

• Deployment plan
– SNMP-based monitoring goes on all the time
– application/host monitoring triggered by the

application/user

NetLogger

Open Issues

• Log collection/archive service
– netlogd to a file not adequate, need to send

monitoring data to some kind of database (LDAP?)
• multicast ability?

– Need to simultaneously send to archive and to one
or more nlv session

• how to correlate archived monitoring data with network
configuration data? (i.e.: traceroute)

• how to map application traffic to a specific
switch/router port?

• Integration with other tools
– Pablo, NWS, Surveyor, etc.

NetLogger

 Getting NetLogger

• Source code and some precompiled binaries are
available at:
– http://www-didc.lbl.gov/NetLogger

• Solaris, Linux, and Irix versions of nlv are
currently supported

